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This article investigates multivariate spatial process models suitable for predicting
multiple forest attributes using a multisource forest inventory approach. Such data set-
tings involve several spatially dependent response variables arising in each location.
Not only does each variable vary across space, they are likely to be correlated among
themselves. Traditional approaches have attempted to model such data using simplify-
ing assumptions, such as a common rate of decay in the spatial correlation or simplified
cross-covariance structures among the response variables. Our current focus is to pro-
duce spatially explicit, tree species specific, prediction of forest biomass per hectare
over a region of interest. Modeling such associations presents challenges in terms of
validity of probability distributions as well as issues concerning identifiability and es-
timability of parameters. Our template encompasses several models with different cor-
relation structures. These models represent different hypotheses whose tenability are
assessed using formal model comparisons. We adopt a Bayesian hierarchical approach
offering a sampling-based inferential framework using efficient Markov chain Monte
Carlo methods for estimating model parameters.

Key Words: Bayesian inference; Coregionalization; Forest inventory; Markov chain
Monte Carlo; Multivariate spatial process.

1. INTRODUCTION

Motivated by a need to produce spatially explicit predictions of multiple forest at-
tributes using a multisource forest inventory approach, this manuscript develops a template
for fitting a wide variety of multivariate Gaussian spatial process models. Specific interest
lies in providing these predictions along with estimates of associated uncertainty for arbi-
trarily defined areas of interest (i.e., small-area prediction for any area in the domain of
interest). This need is increasingly recognized by agencies conducting forest inventory and
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in research based on small-area, high-intensity, inventories from experimental or research
forests.

Small-area prediction of forest attributes and associated estimates of uncertainty are
used to inform forest management decisions, further environmental research, and to serve
as base data for a range of environmental monitoring initiatives. For instance, with the
advent of the UN Framework Convention on Climate Change, and the subsequent Kyoto
Protocol, came a need to map forest biomass and other variables related to measurements
of current carbon stocks and flux. Consequently, several National Forest Inventory (NFI)
programs have adapted their inventory and analysis to better support reporting and research
on carbon budgets (e.g., the Finnish NFI and United States Forest Service Forest Inventory
and Analysis program). Numerous studies, some of which are noted below, have found that
multisource inventory methods coupling inventory plot data with remotely sensed imagery
improve the prediction and mapping of forest biomass and other important economic and
ecological forest variables.

Multisource forest inventory methods combine forest inventory field plot data with re-
motely sensed imagery, most commonly in the form of mid-resolution satellite imagery
(e.g., from the Landsat sensors), to improve large- and small-scale estimates of forest at-
tributes. Several approaches have been employed; among these, k-nearest neighbor (kNN)
and traditional geostatistical methods are among the most popular. A variety of kNN meth-
ods have been proposed and successfully applied in several NFIs (Katila and Tomppo 2001;
Trotter et al. 1997; McRoberts, Nelson, and Wendt 2002; Tomppo and Halme 2003). The
kNN methods often provide useful point estimates (e.g., regional estimates of timber vol-
ume or biomass per hectare); however, Tomppo and Halme (2003) noted that, “the predic-
tions and their standard errors computed from field data are only employed in validating
all multisource predictions in areas ranging from several hundreds of thousand hectares to
several million hectares. This is due to the fact that multisource error estimation for areas
larger than a pixel (field plot) is complicated and the solution is yet to be found” (p. 99).
The complication they referred to is the spatial autocorrelation among adjacent predictions
(i.e., prediction for multi-pixel areas).

Geostatistical methods such as kriging and cokriging (see, e.g., Cressie 1993; Chilés
and Delfiner 1999) have been used to account for spatial dependence in multisource in-
ventory modeling (see Hudak et al. 2002; Lappi 2001). The spatial regression techniques
used by Hudak et al. (2002) and the references therein, follow a traditional approach of
modeling out spatial dependence structure using point estimates of semivariogram model
parameters (e.g., nugget, sill, and range). These parameters are often highly variable as
they are notoriously ill-defined by the data, especially the spatial range parameter. Because
our focus is on predicting forest attributes for a small area, and most importantly a measure
of uncertainty about those predictions, ignoring the potentially large variation in these pa-
rameters will result in falsely precise estimates. Furthermore, from a modeling standpoint,
the traditional spatial regression models are narrow in scope, especially in multivariate
settings.

From a statistical perspective, our primary goal is to incorporate rich correlation struc-
tures in models that are computationally feasible. For spatial data in general, and mul-
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tivariate point-referenced data in particular, obtaining spatial correlation structures from
descriptive methods such as empirical variograms is challenging at best. Indeed, in mul-
tivariate settings we envision a number of spatially varying dependent responses arising
from each location. These variables are likely to be associated among themselves as well
as across locations. Modeling such associations presents challenges in terms of validity
of probability distributions as well as issues concerning identifiability and estimability. A
more appealing way to identify suitable models is through a template encompassing several
models with different correlation structures. These models represent different hypotheses
whose tenability can be assessed using formal model comparisons. We adopt a Bayesian
hierarchical approach (Gelman et al. 2003; Carlin and Louis 2000) for developing this
template. Such an approach not only enables richer modeling but offers a richer inferen-
tial framework using samples from posterior distributions of model parameters. Similarly,
predictions proceed from sampling the posterior predictive distribution that averages over
uncertainty in parameter estimation.

The remainder of this article is organized as follows. Section 2 describes some features
of our motivating dataset that couples forest inventory data from the USDA Forest Service
Bartlett Experimental Forest with imagery from the Landsat sensor and other variables
to map predicted forest biomass by tree species. Section 3 discusses spatial regression
models arising in multivariate process contexts. Section 4 outlines the generalized template
to implement these models and explains how we carry out inference and spatial predictions
in a sampling-based framework. In Section 5 we return to the BEF data and explore several
candidate models discussed in Section 4, provide parameter estimates for the “best” model,
and offer maps of species specific predicted biomass per hectare with associated errors.
Finally, Section 6 provides a summarizing discussion and indicates future work.

2. THE MOTIVATING DATASET

In an effort to better understand forest carbon dynamics in the Northeastern United
States, total biomass by tree species is recorded on permanent forest inventory plots across
the USDA Forest Service Bartlett Experimental Forest (BEF) in Bartlett, NH. The 1,053
hectare BEF covers a large elevation gradient from the village of Bartlett in the Saco River
valley at 207 meters to about 914 meters above sea level (Figure 1). The BEF’s nearly
continuous forest canopy is dominated by American beech (Fagus grandifolia), eastern
hemlock (Tsuga canadensis), red maple (Acer rubrum), sugar maple (Acer saccharum),
and yellow birch (Betula alleghaniensis). In 1931–1932, 500 permanent 0.1 hectare square
inventory plots were located on a 200 × 100 meter grid. In the 2002 reinventory, 437 plots
of the original 500 were georeferenced and remeasured.

Our central interest is to produce data layers of metric tons of above-ground biomass
per hectare by tree species across the BEF. Because data layers such as these serve as input
variables to subsequent models, it is crucial that each layer provides a spatially explicit
measure of uncertainty.

As noted in the introduction, satellite imagery and other remotely sensed variables have
proved useful regressors in multisource inventory of forest attributes such as biomass per
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Figure 1. Elevation in meters above sea level and slope percent across the BEF.

hectare. Three dates of mid-resolution Landsat 7 ETM+ satellite imagery were acquired for
the BEF. The imagery was obtained from the National Land Cover Database (www.mrlc.
gov/mrlc2k_nlcd.asp). All images were geo-rectified to a common base layer, each with
a root mean square error of less than 30 meters. In the rectification process, images were
resampled to a 30 × 30 meter spatial resolution using the cubic convolution algorithm (see
Homer et al. 2004). The three dates of imagery are April 14, 2003, August 9, 2002, and
October 22, 2000, corresponding to early and peak vegetation green-up and senescence.

Each image was transformed to tasseled cap (TC) components of brightness (1), green-
ness (2), and wetness (3) using data-reduction techniques (Huang et al. 2002). The nine re-
sulting spectral variables are referred to as AprTC1, AprTC2, AprTC3, AugTC1, AugTC2,
AugTC3, and OctTC1, OctTC2, OctTC3. Thus, AprTC1 represents a spectral variable cor-
responding to the brightness level in April. In addition to these spectral variables, digital
elevation model data was used to produce a 30 × 30 elevation (ELEV) and slope (SLOPE)
layer for the BEF, Figure 1 (see http:// seamless.usgs.gov for metadata). The centroids of
the 437 georeferenced inventory plots were intersected with the elevation (ELEV), slope
(SLOPE), and nine spectral variables.

As previously noted, five tree species comprise the plurality of forest cover on the BEF.
Therefore, the plot variables of interest are estimated metric tons of above-ground biomass
per hectare for American beech (BE), eastern hemlock (EH), red maple (RM), sugar maple
(SM), and yellow birch (YB). Figure 2 provides an interpolated surface for each of the five
response variables.

To demonstrate prediction, we randomly divided the plots into two sets of 218. The
first set serves to fit the candidate models and the second holdout set is used for validation.
We stress that this split-set approach is used here only for illustration and final inferences
will be drawn from the full set of 437 plots.
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Figure 2. Interpolation of metric tons of biomass per hectare by species measured on inventory plots across the
BEF. This set of 218 inventory plots was used for model parameter estimation.

3. MULTIVARIATE SPATIAL REGRESSION MODELS

The multivariate setting envisions a multivariate spatial regression model comprising
an m × 1 response vector Y(s) = [Yi (s)]m

i=1 along with an m × p (p =
∑m

i=1 pi ) matrix
of regressors XT (s) = [xT

i (s)]m
i=1 connected through

Y(s) = XT (s)βββ + W(s) + εεε(s), (3.1)
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where βββ = (βββ1, . . . , βββ p)
T is a p × 1 vector of regression coefficients with βββ i being the

pi ×1 vector of regression coefficients corresponding to xT
i (s), W(s) ∼ MVGP(0, K(∙, ∙))

is an m × 1 zero-centered multivariate Gaussian Process capturing spatial variation, and
εεε(s) ∼ MVN(0, 9) models the measurement error effect for the response with the m × m
dispersion matrix 9.

The critical ingredient for spatial modeling in (3.1) is the multivariate Gaussian pro-
cess. We write an m × 1 process as W(s) ∼ MVGP(0, K(∙, ∙)), where W(s) = [Wi (s)]m

i=1
is an m × 1 vector process with an m × m cross-covariance matrix function K(s, s′) =
[cov(Wi (s), W j (s′))]m

i, j=1 whose (i, j)th element is the covariance function between Wi (s)
and W j (s′). For any integer n and any collection of sites s1, . . . , sn , we write the mul-
tivariate realizations as an mn × 1 vector W = (WT (s1), . . . , WT (sn))T which is dis-
tributed as an mn × 1 multivariate normal distribution: W ∼ MVN(0, 6W), where 6W =
[K(si , s j )]n

i, j=1 is an mn ×mn matrix that can be partitioned as an n ×n block matrix com-
prising m × m blocks with the (i, j)th block being the cross-covariance matrix K(si , s j ).
Letting Y = [Y(si )]n

i=1 be the mn × 1 observed response vector, its dispersion matrix
becomes 6Y = 6W + In ⊗ 9, where In is the n × n identity matrix and ⊗ denotes the
Kronecker product (e.g., Harville 1997).

Clearly, care is needed in choosing K(∙, ∙) so that 6W is symmetric and positive defi-
nite. Characterizing valid cross-covariance matrix functions that ensure positive-
definiteness of 6W is indeed more demanding than the choice of real-valued covariance
functions in univariate spatial modeling that are characterized by Bochner’s Theorem (see,
e.g., Cressie 1993). In the multivariate setting, we require that for an arbitrary number and
choice of locations the resulting 6W be symmetric and positive definite. In fact, note that
the cross-covariance matrix function need not be symmetric or positive definite but must
satisfy K(s′, s) = KT (s, s′) so that 6W is symmetric. In the limiting sense, as s → s′,
K(s, s) does become symmetric and positive definite as it models the covariances between
the different components of W(s) within site s. A theorem by Cramér (see, e.g., Chilés and
Delfiner 1999) provides a characterization of cross-covariance functions, akin to Bochner’s
theorem for covariance functions, but using Cramér’s result in practical modeling is less
trivial. Majumdar and Gelfand (2006) offered a review of other approaches such as convo-
lution of covariance functions that lead to valid cross-covariances, but they too recognized
the computational and modeling difficulties involved.

Since our primary objective is to develop a computationally feasible template that ac-
commodates sufficiently rich multivariate spatial models, we adopt a constructive approach
that has recently gained popularity through coregionalization models (Wackernagel 2003).
To motivate this approach, consider how some of the simplest cross-covariance functions
arise. For instance, suppose that W̃(s) = [W̃i (s)]m

i=1 is an m × 1 process with independent
zero-centered spatial processes with unit variance; that is, each W̃k(s) ∼ G P(0, ρk(∙, ∙))
with var(W̃k(s)) = 1 and cov(W̃k(s), W̃k(s′)) = ρk(s, s′; θθθ k), where ρk(∙; θθθ k) is a cor-
relation function associated with W̃k(s) and θθθk are parameters therein. Also note that
cov(W̃k(s), W̃ ′

k(s
′)) = 0 when k 6= k ′ (irrespective of how close s and s′ are), which

implies that the cross-covariance matrix function K̃(s, s′; θθθ) with θθθ = {θθθk}m
k=1 is simply a

diagonal matrix with (k, k)th element being ρk(s, s′; θθθ k). It easily follows that K̃(s, s′; θθθ)
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is a valid cross-covariance matrix since each of its diagonal elements is a valid real-valued
positive definite function.

The Matérn correlation function allows control of spatial association and smoothness
(see, e.g., Stein 1999) and is given by

ρ(s, s′; φ, ν) =
1

2ν−10(ν)
(‖s − s′‖φ)νKν(‖s − s′‖; φ); φ > 0, ν > 0, (3.2)

where φ controls the decay in spatial correlation and ν is a smoothness parameter with
higher values yielding smoother process realizations. Also, 0 is the usual Gamma function
while Kν is a modified Bessel function of the third kind with order ν and ‖s − s′‖ is the
Euclidean distance between the sites s and s′. Covariance functions that depend only on the
distance metric are often referred to as isotropic. Several other choices for valid correlation
functions were discussed by Banerjee et al. (2004). For W̃k(s) we choose isotropic Matérn
functions ρk(s, s′; θθθ k) with θθθk = (φk, νk) for k = 1, . . . , m. Note that ρk(s, s′) is the
correlation function for the kth component of W̃(s) and does not correspond to the kth
component of the observed vector process Y(s). Consequently, the parameters νk and φk

do not correspond directly to Y(s), but to the unobserved process W̃(s) that drives the
spatial variation in Y(s).

For building richer covariance structures, we assume the process W(s) = A(s)W̃(s)
to be a linear transformation of W̃(s), where A(s) is a space-varying matrix transform
that is nonsingular for all s. Then, the cross-covariance matrix functions are related as
K(s, s′; θθθ) = A(s)K̃(s, s′)AT (s′). It is worth noting that K̃(s, s; θθθ) = Im (the m × m iden-
tity matrix), so that K(s, s; θθθ) = A(s)AT (s). Therefore A(s) = K1/2(s, s; θθθ) is identified
as a square root (e.g. Cholesky) of K(s, s; θθθ) and can be taken to be lower-triangular with-
out loss of generalization. Indeed, the one-to-one correspondence between the elements
of the square-root matrix and the original matrix is well known (see, e.g., Harville 1997,
p. 229). The validity of K(s, s′; θθθ) follows immediately from that of K̃(s, s′; θθθ) and the
dispersion matrix of realizations of W(s), 6W = [K(si , s j ; θθθ)]n

i, j=1 can be written as

[A(si )K̃(si , s j ; θθθ)AT (s j )]
n
i, j=1 = [⊕k

i=1A(si )][⊕
m
k=1ρk(si , s j ; θθθk)]

n
i, j=1[⊕k

i=1AT (si )]

= A 6W̃A
T , (3.3)

where ⊕ is the “diagonal” or direct-sum matrix operator (e.g., Harville 1997) so, for each
(i, j), ⊕m

k=1ρk(si , s j ; θθθ k) is an m × m diagonal matrix with ρk(si , s j ; θθθ) as its diago-
nals while A is a block-diagonal matrix with the i th diagonal block being A(si ). This
model is essentially a spatially adaptive version of the linear model of coregionaliza-
tion (LMC) in the geostatistics literature (Wakernagel 2003; Gelfand et al. 2004; Zhang
2006). This is a highly structured model that models the cross-covariance function as
K(s, s′) =

∑m
k=1 ak(s)aT

k (s′)ρk(s, s′), where ak(s) is the kth column vector of A(s).
Note that the space-varying linear transformation A(s) induces a nonstationary process

that might often be realistic and yield better estimates. However, treating site as com-
pletely unknown may create problems as one would need to assign space-varying priors on
them; for example, we could treat each element of A(s) as a spatial process or construct
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an inverted-Wishart process as in Gelfand et al. (2004). Realistically, though, we would
rarely find data that contains enough information to estimate such processes. In certain
experimental settings with nested sites, such as in forest inventories or agricultural exper-
iments, it is possible to model A(s) assuming an embedded spatial process within site s,
leading to multiresolution spatial models. See, for example, Banerjee and Johnson (2006)
and Banerjee and Finley (2007) for such applications.

Stationary cross-covariance functions, on the other hand, necessarily imply the linear
transformation to be independent of space. Here, since the cross-covariance is a function of
the separation between sites, we have K(s, s; θθθ) = K(0; θθθ) so that A(s) = A = K1/2(0; θθθ).
In such cases, A = I ⊗ A and (3.3) reduces to

6W = (In ⊗ A)6W̃(In ⊗ AT ). (3.4)

As a further simplification, suppose we choose K̃(s, s′; θθθ) = ρ(s−s′; θθθ)Im , that is, a single
correlation function for each component of W̃(s). This yields 6W̃ = R(θθθ) ⊗ Im , where
R(θθθ) = [ρ(si , s j ; θθθ)]n

i, j=1 and results in a separable or intrinsic specification (see, e.g.,
Wackernagel 2003):

6W = (In ⊗ A)(R ⊗ Im)(In ⊗ AT ) = R(θθθ) ⊗ K(0; θθθ). (3.5)

Here, the dispersion structure separates into a spatial component R(θθθ) and a within-site
dispersion matrix K(0; θθθ). While such models have nicer interpretability, they are often
too simplistic and provide poorer fits to the data.

4. BAYESIAN IMPLEMENTATION USING
A GENERALIZED TEMPLATE

4.1 ESTIMATION OF MODEL PARAMETERS

We adopt a Bayesian approach specifying prior distributions on the parameters to build
hierarchical models that are estimated using a Gibbs sampler, with Metropolis updates
when required, for fitting our models (see, e.g., Gelman et al. 2003; chap. 11). Although
such algorithms are usually problem-specific, often requiring intensive coding, casting
the problem in a general template allows several models to be fit without rewriting vast
amounts of code. We cast the data model into the following generic template:

Y = Xβββ +A W̃ + εεε; εεε ∼ N (0, Im ⊗ 9), (4.1)

where Y is the mn × 1 response vector, and X is the mn × p matrix of regressors, βββ is the
corresponding vector of regression coefficients. The specifications for the mn × mn matrix
A and W̃ give rise to different multivariate spatial regression models. Markov chain Monte
Carlo (MCMC) model fitting proceeds with a Gibbs sampler with Metropolis steps (see,
e.g., Gelman et al. 2003) on the marginalized scale, after integrating out W̃, to reduce the
parameter space. The marginalized likelihood becomes MVN(Xβββ,A 6W̃A

T + In ⊗ 9).
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Bayesian hierarchical models are completed by assigning prior distributions on the
parameters. Customarily, we set βββ ∼ MVN(μμμβββ,6βββ) to a p-dimensional multivariate nor-
mal distribution, while the measurement error dispersion 9 could be assigned an inverse-
Wishart prior although one usually assumes independence of measurement error for the
different response measurements in each site and sets 9 = diag(τ 2

i )m
i=1 as a diagonal

matrix with each τ 2
i ∼ IG(ai , bi ). Also recall that A itself is unknown and needs to be

stochastically specified. As mentioned in Section 3, the specific form of A will depend
upon the exact form of A. For the stationary setting, we have A = In ⊗ A and we assign
an inverse-Wishart prior to AAT . Finally recall that 6W̃ = [K̃(si − s j ; θθθ)]n

i, j=1 and one
needs to assign priors on θθθ = {φk, νk}m

k=1. This will again depend upon the specific choice
of the correlation functions. In general the spatial decay parameters are weakly identifi-
able and prior specifications become an even more delicate issue. Reasonably informative
priors are needed for satisfactory MCMC behavior and typically we set prior distributions
for the decay parameters relative to the size of their domains, for instance by setting the
prior means to values that imply the spatial ranges to approximately a certain fraction of
the maximum distance. For the Matérn correlation function, the smoothness parameter ν

is often estimated using a U (0, 2) prior distribution. This choice is motivated by earlier
findings (e.g., Stein 1999) that it is almost impossible for the data to distinguish between
these smoothness parameters for values greater than 2.

Generically denoting by � = (βββ,A , θθθ,9) the set of parameters that are to be updated
in the marginalized model from (4.1), we need to sample from the posterior distribution

P(� | Data) ∝ P(βββ)P(A )P(θθθ)P(9)P(Y | βββ,A , θθθ,9). (4.2)

An efficient MCMC algorithm is obtained by updating βββ from its full conditional
MVN(μμμβββ|∙, 6βββ|∙), where

6βββ|∙ = [6−1
βββ + XT (A 6W̃A

T + In ⊗ 9)−1X]−1;

μμμβββ|∙ = 6βββ|∙X
T (A 6W̃A

T + In ⊗ 9)−1Y.

All the remaining parameters have to be updated using Metropolis–Hastings steps. De-
pending upon the application, this may be implemented using block-updates (e.g., all the
parameters in 9 in one block and those in A in another). On convergence, the MCMC
output generates L samples, say {�(l)}L

l=1, from the posterior distribution in (4.2).

4.2 POSTERIOR PREDICTIVE INFERENCE

In updating � using the marginal model as outlined above, we do not directly sample
the spatial coefficients W̃ and hence cannot directly obtain W = A W̃. This shrinks the
parameter space resulting in a more efficient MCMC algorithm. A primary advantage of
the first-stage Gaussian models (as in (4.1)) is that the posterior distribution of W̃ can be
recovered in a posterior predictive fashion by sampling from

P(W̃| Data) ∝
∫

P(W̃|�, Data)P(�| Data)d�. (4.3)
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Once the posterior samples from P(�| Data), {�(l)}L
l=1, have been obtained, posterior sam-

ples from P(W̃| Data) are drawn by sampling W̃
(l)

for each �(l) from P(W̃ | �(l), Data).
This composition sampling is routine because P(W̃ | �, Data) in (4.3) is Gaussian; in fact,
from (4.1) we have this distribution as

MVN
[
(6−1

W̃
+A T (In ⊗ 9−1)A )−1A T (In ⊗ 9−1)(Y − Xβββ),

(6−1
W̃

+A T (In ⊗ 9−1)A )−1
]
.

The posterior estimates of these realizations can subsequently be mapped with contours to
produce image and contour plots of the spatial processes.

Let {s0i }n∗

i=1 be a collection of n∗ locations where we seek to predict the response.
It might also be of interest to compute the posterior predictive distribution P(W̃

∗
| Data)

where W̃
∗

= [W̃(s0k)]n∗

k=1. Note that

P(W̃
∗
| Data) ∝

∫
P(W̃

∗
|W̃,�, Data)P(W̃|�, Data)P(�| Data)d�dW̃. (4.4)

This can be computed by composition sampling by first obtaining the posterior samples

{�(l)}L
l=1 ∼ P(�| Data), then drawing W̃

(l)
∼ P(W̃|�(l), Data) for each l as described

in (4.3) and finally drawing W̃
∗(l)

∼ P(W̃
∗
|W̃

(l)
�(l), Data). This last distribution is

derived as a conditional distribution from a multivariate normal distribution as follows:
(

W̃

W̃
∗

)

∼ MVN

((
0
0

)

,

(
6W̃ 6W̃,W̃

∗

6W̃
∗
,W̃ 6W̃

∗

))

,

where 6W̃ = [⊕m
k=1ρk(si , s j ; θθθk)]

n
i, j=1

6W̃∗ = [⊕m
k=1ρk(s0i , s0 j ; θθθk)]

n∗

i, j=1,

and 6T
W,W∗ = 6W̃∗,W̃ = [⊕m

k=1ρk(s0i , s j ; θθθ k)]
n∗,n
i=1, j=1.

Therefore, the distribution P(W̃
∗
|W̃,�, Data) is MVN(μμμW̃

∗
|W̃, 6W̃

∗
|W̃), where

μμμW̃
∗
|W̃ = 6T

W̃,W̃∗6
−1
W̃

W̃,

6W̃
∗
|W̃ = 6W̃

∗ − 6T
W̃,W̃

∗6−1
W̃

6W̃,W̃
∗ .

Once {W̃
∗(l)

}L
l=1 have been obtained, we can easily predict the responses, say Y∗ =

[Y(s0i )]n∗

i=1 at those sites as long as the mn∗ × p matrix of regressors for those locations,
say X∗, is available. This can be done by simply sampling the conditional expectations

E[Y∗| Data](l) = X∗βββ(l) + A (l)W̃
∗l

for l = 1, . . . , L . Equivalently, predictions can be
executed by drawing posterior samples from the marginal distribution below, without re-
sorting to direct updates of the W̃ as follows:

P(Y∗| Data) ∝
∫

P(Y∗|�, Data)P(�| Data)d�. (4.5)
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In the stationary setting with the marginalized model, observe that
(

Y
Y∗

)

∼ MVN

((
Xβββ

X∗βββ

)

,

(
6Y,Y 6Y,Y∗

6T
Y,Y∗ 6Y∗,Y∗

))

,

where 6Y,Y = A 6W̃A
T + In ⊗ 9 with A = In ⊗ A,

6Y∗,Y∗ = A ∗6W̃∗A
∗T with A ∗ = (In∗ ⊗ A),

and 6T
Y,Y∗ = A ∗6W̃∗,W̃A

T .

Therefore, the distribution P(Y∗|�, Data) is MVN(μμμY∗|Y, 6Y∗|Y), where

μμμY∗|Y = X∗βββ + 6T
Y,Y∗6−1

Y,Y(Y − Xβββ),

6Y∗|Y = 6Y∗,Y∗ − 6T
Y,Y∗6−1

Y,Y6Y,Y∗ .

Simulating from P(Y∗|�, Data) is routine for any given �. Hence, the predictive distribu-
tion is again obtained using composition sampling: for each �(l) ∼ P(� | Data), we draw
Y∗,(l) ∼ P(Y∗|�(l), Data) to obtain posterior predictive samples {Y∗,l}L

l=1.

5. BEF DATA ANALYSIS

5.1 CANDIDATE MODELS

The generalized template introduced in Section 4 suggests several potential models
for the BEF biomass data. Here we consider four stationary process models of increasing
complexity. Our focus is on the alternative specifications of A and W̃ within (4.1). For
the candidate models, we assume independent response specific measurement error, 9 =
diag(τ 2

i )m
i=1, a common set of regressors (i.e., common X matrix), and an isotropic spatial

process that can be modeled with the Matérn correlation function given in (3.2).
A simple linear regression model (no random effects) is obtained from setting

Model 1: A W̃ = 0

in (4.1) and would suffice with negligible extraneous variation beyond what is explained
by the regressors. However, we expect similar responses in proximate locations, possibly
resulting from similar topographic and environmental conditions. This autocorrelation is
seen in each response variable’s surface (Figure 2). If the regressors do not account for
correlation as a function of distance between locations, then this model violates the implicit
assumption of conditionally independent observations.

The first two spatial models impose separable correlation structures as in (3.5). For
each model, 6W̃ = [K̃(si − s j ; θθθ)]n

i, j=1, θθθ = {φ, ν}m
k=1 implies the response variables

share a common spatial decay, φ, and smoothness parameter, ν. The first of these models
assumes independently varying spatial processes,

Model 2: A = In ⊗ diag(σi )
m
i=1,
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whereas the second attempts to capture the spatial covariances among the response vari-
ables within a location,

Model 3: A = In ⊗ A.

The next two models we investigate are nonseparable extensions of Models 2 and 3. Specif-
ically, these models allow for process specific spatial decay and smoothness parameters,
θθθ = {φk, νk}m

k=1, for each of the components of W̃(s). The first of these, like Model 2,
ignores the within location dependence between the response variables

Model 4: A = In ⊗ diag(σi )
m
i=1 and 6W̃ = [K̃(si − s j ; θθθ)]n

i, j=1,

while the second one, like Model 5, allows for such dependence,

Model 5: A = In ⊗ A and 6W̃ = [K̃(si − s j ; θθθ)]n
i, j=1.

5.2 MODEL SELECTION

Since we consider several alternative models with varying degrees of spatial richness,
we use the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) as a measure
of model choice. The DIC has nice properties for Gaussian likelihoods (as ours) and is
particularly convenient to compute from posterior samples. This criterion is the sum of
the Bayesian deviance (a measure of model fit) and the (effective) number of parameters
(a penalty for model complexity). It rewards better fitting models through the first term
and penalizes more complex models through the second term, with lower values indicating
favorable models for the data. The deviance, up to an additive quantity not depending upon
�, is simply the negative of twice the log-likelihood, D(�) = −2 log L(Data| �), where
L(Data| �) is the first stage Gaussian likelihood from (4.1) for the respective models.
The Bayesian deviance is the posterior mean, D(�) = E�|Y[D(�)], while the effective
number of parameters is given by pD = D(�) − D(�̄), where �̄ is the posterior mean
of the model parameters �. The DIC is then given by D(�) + pD and is easily computed
from the posterior samples.

5.3 MODEL PARAMETER ESTIMATION

As noted in Section 4.1, the Bayesian hierarchical models are completed by assign-
ing prior distribution to parameters � = (βββ,A , θθθ,9). For each model, a flat prior was
assigned to the regressor parameters in βββ. The prior distributions for the remaining param-
eters are consistent with definitions found in Appendix A of Gelman et al. (2003). As noted
earlier, we assume 9 = Diag(τ 2

i )5
i=1 with each τ 2

i receiving an inverse-Gamma prior with
infinite variance, IG(2, bi ). In Models 2 and 4, where AAT = Diag(σ 2

i )5
i=1, we again as-

sign an IG(2, bi ) to each of these variance parameters. The mean of this inverse-Gamma
is determined by the bi . To specify the hyperparameter bi for each τ 2

i and σ 2
i , we used

nugget and partial sill estimates, respectively, from response-specific empirical semivari-
ograms. In Models 3 and 4, AAT is a full 5 × 5 covariance matrix, and therefore receives
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an inverse-Wishart prior with hyperparameters of five degrees of freedom and diagonal co-
variance matrix with diagonal elements drawn from the empirical semivariograms partial
sill estimate.

The spatial decay, φ, and smoothness parameter, ν, used in the Matérn correlation
function each receive a Uniform prior distribution. The combination of these parameters
define the range of spatial dependence within the domain. If for instance ν = 0.5, then
(3.2) reduces to the familiar Exponential correlation function ρ(s, s′; φ, ν) = exp(−φ‖s −
s′‖) and the effective range (i.e., the distance at which the correlation drops to 0.05) is
determined by − log(0.05)/φ. By allowing ν and φ to vary, the Matérn correlation function
will produce a large interval of possible effective range values. Although we are interested
in providing vague prior distributions, we want to set the support of ν and φ such that
they allow for a reasonable effective range estimate. The maximum distance between any
two plots in the BEF is 4,704.38 meters; therefore, we choose ν ∼ U (0.1, 1.5) and φ ∼
U (0.001, 0.1) which allows for an effective spatial range between about 10 and 4,750
meters. Obviously, other support on priors for ν and φ will produce a comparable interval
for effective range; however, our previous experience suggests that these are reasonable
priors.

As stated in Section 5.1, we assume that the candidate models share a common set
of regressors. These regressors were chosen by backward elimination performed indepen-
dently for each of the five response variables.

Programmatically, posterior sampling followed Section 4.1. For each sample, we used
a single Metropolis–Hastings block-update of components in A , θθθ , and 9 with a mul-
tivariate normal proposal density. A Gibbs step then followed to update βββ. Because all
parameters in θθθ and 9 > 0 we actually update log(φ), log(ν), and log(Diag(τ 2

i )5
i=1), then

exponentiated each for use in the target likelihood. Similarly, we update A then calculate
K. Therefore, each parameter’s Jacobian was required in the target likelihood.

We fit the five competing models to the data described in Section 2. The models were
written in C++ and, being heavily dependent upon efficient matrix computations, leveraged
the Intelr Math Kernel Library BLAS and LAPACK routines. For each of these models,
three parallel MCMC chains were run for 20,000 iterations. The CODA package in R
(www.r-project.org) was used to diagnose convergence by monitoring mixing, Gelman–
Rubin diagnostics, autocorrelations, and cross-correlations. For each of the models, 5,000
iterations revealed sufficient mixing of the chains, so the remaining 45,000 samples (15,000
× 3) were retained for posterior analysis.

DIC was used to select the best candidate model to produce response-specific data lay-
ers for random spatial effects E[W| Data], predicted random spatial effects E[W∗ | Data],
and predicted biomass per hectare E[Y∗| Data] with associated lower and upper 95% pos-
terior predictive intervals. All interpolated surfaces presented here, using either the model
plots or prediction plots, were produced using multilevel B-splines (Lee et al. 1997) com-
puted with the MBA R package available at www.r-project.org.
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Table 1. Model comparisons using the DIC criterion.

Model Parameters pD DIC

Model 1 τ2
m 35.2 8559.08

Model 2 ν, φ, σ 2
m , τ2

m 34.79 8542.76
Model 3 ν, φ, A, τ2

m 34.63 8520.51
Model 4 νm , φm , σ 2

m , τ2
m 33.84 8535.98

Model 5 νm , φm , A, τ2
m 34.69 8505.20

5.4 RESULTS

Table 1 provides pD and DIC scores for the competing models. Foremost, this table
shows that the addition of spatial effects decreases DIC. The nearly constant estimates of
effective number of parameters, pD, suggests that increased complexity results in shrinkage
among the regressors and/or spatial process parameters. Decreased DIC scores in Models
3 and 5, over Models 2 and 4, support modeling of the conditional covariance among the
response variables (i.e., conditional on the regressors). Holding the spatial variance con-
stant, the nonseparable Models 4 and 5 perform better than the separable models. This
suggests that the response variables exhibit different trends in conditional spatial depen-
dence. Based solely on DIC, Model 5 provides the best model fit and therefore serves in
subsequent analysis.

Estimates for the posterior distribution of each regressor’s parameter are presented in
Table 2. The sign and magnitude of estimates are consistent with univariate estimates found
in the initial step-wise selection procedure. The credible intervals identify several regres-
sors that contribute significantly to explaining variation in species-specific biomass per
hectare. Because our focus is on optimal model selection, and not on understanding the
functional relationship between the spectral variables and the response, we do not attempt
to interpret these coefficients. We will point out that the signs on the elevation and slope
coefficients are consistent with site conditions generally associated with the occurrence of
these species and also agree with trends depicted in Figure 2. For instance, Eastern hem-
lock is typically found in lower elevations on moist soils, which corresponds to a negative
SLOPE coefficient and high Eastern hemlock biomass values on shallow slopes, referring
to Figures 1 and 2.

We now turn to estimates of the spatial process and measurement error parameters.
The first block of parameters in Table 3 provides estimates for the elements in the square
root of the 5 × 5 cross-covariance matrix. The subscripts on these parameters identify the
species’ variance or covariance. It is more instructive to convert the AAT covariance matrix
to a correlation matrix (5.1). This matrix provides a summary of the posterior conditional
correlation among response variables, where rows and columns correspond to the species
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Table 2. Percentiles of the posterior distribution of each regressor in Model 5. Each block of regressors corre-
spond to one of the five response variables.

Parameters 50% (2.5%, 97.5%) Parameters 50% (2.5%, 97.5%)
BE Model RM Model

Intercept −480.75 (−747.52, −213.54) Intercept 158.94 (16.92, 295.91)
ELEV 0.17 (0.09, 0.24) ELEV −0.07 (−0.14, 0.00)

AprTC2 1.72 (0.69, 2.74) SLOPE −1.76 (−2.75, −0.77)
AprTC3 −1.00 (−1.93, −0.06) AprTC2 −0.87 (−1.42, −0.30)
AugTC1 3.39 (2.25, 4.51) AugTC3 1.30 (0.43, 2.14)
AugTC3 1.45 (−0.25, 3.19) OctTC2 −0.95 (−1.61, −0.29)
OctTC2 −0.77 (−1.83, 0.25) SM Model

EH Model Intercept −97.71 (−191.86, 0.62)
Intercept −170.85 (−364.6, 21.45) SLOPE 1.11 (0.48, 1.74)
SLOPE −0.95 (−1.69, −0.17) AugTC2 1.05 (0.71, 1.37)
AprTC1 2.08 (0.54, 3.66) AugTC3 −0.44 (−1.1, 0.21)
AprTC2 −0.87 (−1.85, 0.13) YB Model
AprTC3 1.75 (0.38, 3.13) Intercept −174.62 (−308.22, −29.63)
AugTC2 −0.65 (−1.11, −0.18) ELEV 0.08 (0.01, 0.13)
AugTC3 1.54 (0.60, 2.51) SLOPE 0.01 (−0.76, 0.82)
OctTC1 −1.74 (−2.76, −0.73) AugTC1 0.27 (−0.26, 0.77)
OctTC2 1.55 (0.63, 2.45) AugTC3 1.37 (0.47, 2.21)
OctTC3 −1.27 (−2.24, −0.31)

BE, EH, RM, SM, YB and matrix elements are the 50% (2.5%, 97.5%) percentiles.
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1
0.16(0.13, 0.21) 1

−0.20(−0.23, −0.15) 0.45(0.26, 0.66) 1
−0.20(−0.22, −0.17) −0.12(−0.16, −0.09) −0.48(−0.52, −0.41) 1

0.07(0.04, 0.08) 0.22(0.20, 0.25) 0.03(0.00, 0.09) 0.01(−0.03, 0.03) 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(5.1)

It is important to keep in mind that the cross-covariance, or cross-correlation, matrix cap-
tures association among the response variables conditional on the regressors. Therefore, it
is best to interpret this correlation matrix in conjunction with the surface of random spatial
effects from (4.3), depicted in Figure 3. Several significant correlations in (5.1), and corre-
sponding spatial trends in Figure 3, support the earlier results suggesting that the regressors
alone do not adequately account for extraneous variation in biomass per hectare. The sig-
nificant correlations in (5.1) indicate strong spatial dependence among the five response
variables, and corroborates the better performance of Model 5 in terms of DIC scores as
seen in Table 1.

Returning to Table 3, the next block of parameters captures the measurement or pure
error, 9 = Diag(τ 2

i )5
i=1. These values suggest that for all species there is a relatively large

portion of variation not explained by the regressors or the spatial process. This seems espe-
cially true for red maple (RM) and sugar maple (SM). A more exhaustive set of covariates
would help to reduce this variation further. However, we find the spatial variance compo-
nents for American beech (BE), eastern hemlock (EH), and yellow birch (YB), that is, the
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Table 3. Percentiles of the posterior distribution of variance and spatial range parameters from Model 5.

Parameters Estimates: 50% (2.5%, 97.5%)

KBE 1,969.01 (1,719.37, 2,446.00)
KBE,EH 122.21 (112.07, 145.78)
KBE,RM −132.35 (−160.12, −106.93)
KBE,SM −98.21 (−117.39, −78.84)
KBE,YB 43.73 (28.10, 71.33)

KEH 312.64 (199.31, 495.09)
KEH,RM 113.33 (82.99, 159.39)
KEH,SM −24.70 (−32.23, −16.69)
KEH,YB 61.02 (55.83, 68.77)

KRM 247.96 (118.83, 490.38)
KRM,SM −84.98 (−129.39, −49.63)
KRM,YB 6.63 (−0.76, 12.08)

KSM 124.36 (85.97, 158.89)
KSM,YB 0.76 (−5.69, 4.73)

KYB 265.31 (149.58, 359.64)

τ2
BE 180.43 (142.24, 250.46)

τ2
EH 423.18 (340.81, 491.75)

τ2
RM 762.27 (653.28, 956.85)

τ2
SM 728.21 (518.88, 938.64)

τ2
YB 460.77 (385.36, 503.38)

φ1 0.01070 (0.00896, 0.01498)

φ2 0.00407 (0.00305, 0.00511)

φ3 0.00441 (0.00332, 0.00646)

φ4 0.00889 (0.00590, 0.01152)

φ5 0.00981 (0.00346, 0.01238)

ν1 0.45 (0.34, 0.67)
ν2 0.46 (0.26, 0.61)
ν3 0.67 (0.30, 0.74)
ν4 0.31 (0.26, 0.42)
ν5 0.55 (0.42, 0.68)

diagonal elements in K(0; θθθ), do explain a substantial portion of the total variance. To be
precise, we computed the posterior medians of the ratio [K(0; θθθ)]i i/([K(0; θθθ)]i i + τ 2

i ) for
i = 1, . . . , 5 (corresponding to the five response variables) to be 0.92, 0.42, 0.25, 0.15, and
0.37, respectively.

The last two blocks in Table 3 provide point and credible interval estimates for the
spatial decay and smoothness parameters present in the spatial correlation function param-
eters, φk and νk . Based on these parameters’ credible interval we conclude that the Uniform
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Figure 3. Interpolation of the recovered random spatial effects of biomass per hectare, E[W| Data], by species
from Model 5.

priors’ support was sufficiently vague and did not influence the course of the chains (i.e.,
the credible intervals are well within the defined support). It is best to use these estimates
to solve the Matérn correlation function for the effective range of spatial dependence (i.e.,
the distance at which ρ = 0.05). Table 4 provides the median and 95% credible interval for
each process effective range. Considering that the inventory plots are laid out on a 200×100
meter grid and the estimated effective range bounds, we conclude that observations made
on a given inventory plot are not independent from those of neighboring plots. This spa-
tial dependence must be considered in prediction. Again referring to Table 4, there is a
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Table 4. Distance in meters at which the spatial correlation drops to 0.05 for each of the underlying spatial
processes. Distance calculated by solving the Matérn correlation function for d using ρ = 0.05 and
process specific φ and ν parameters estimates from Model 5.

Process Estimates: 50% (2.5%, 97.5%)

W̃1(s) 270.84 (200.15, 334.52)
W̃2(s) 697.47 (466.23, 998.97)
W̃3(s) 756.50 (504.08, 954.28)
W̃4(s) 275.10 (207.13, 395.49)
W̃5(s) 314.03 (253.71, 856.79)

Figure 4. Interpolation of metric tons of biomass per hectare by species measured on inventory plots across the
BEF. This set of 218 inventory plots was used for model validation.
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Figure 5. Interpolation of the predicted random spatial effects of biomass per hectare, E[W∗ | Data], by species
from Model 5.

relatively large disparity in the range of the underlying W̃(s) driving the spatial dependence
among several species. Specifically, W̃1(s) and W̃4(s) have small effective spatial range
compared with W̃2(s) or W̃3(s). This result strongly supports the use of the nonseparable
models that allow for different rates of spatial decay.

Our central purpose in fitting this model was to gain access to the multivariate posterior
predictive distribution of biomass per hectare of any set of newly observed points across
the BEF (e.g., the set of validation points Figure 4). Given the set of validation points
{s0i }n∗

i=1, where n∗ = 218 and the posterior samples {�(l)}L
l=1 ∼ P(�| Data), where

L = 45,000, we might first use (4.4) to compute and map (Figure 5) the posterior predictive
distribution P(W∗ | Data) (recall W∗ = A W̃∗). Because of the strong conditional spatial
dependence exhibited by the response variables, this surface of predicted spatial random
effects resembles the recovered spatial random effects surface (Figure 3).
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Figure 6. Interpolation of the mean of the posterior predictive sample of biomass per hectare, E[Y∗| Data], by
species from Model 5.

Prediction of the validation points, P(Y∗| Data), follows (4.5). Figure 6 provides the
mean of each species’ metric tons per hectare predictive distribution. Except for a few
departures and inherent smoothing, the predicted surfaces generally follow the observed
surfaces (Figure 4). Referring to Figures 4 and 6, we again see American beech (BE) fol-
lowing the observed trend of greater biomass volume in higher elevations and on moderate
slopes. Eastern hemlock (EH) dominates shallow slopes, but is overestimated on the higher
elevations which suggests that ELEV should have been forced to stay in the model. Red
maple (RM) follows the observed surface, except for where there is a paucity of valida-
tion points in the upper elevations. Sugar maple (SM) biomass volume seems to be over-
estimated at lower elevations and in the western portion of the BEF. Finally, yellow birch
(YB) generally follows the observed trends but is oversmoothed.
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Figure 7. Interpolation of the range between the lower and upper 95% posterior predictive intervals of biomass
per hectare, by species from Model 5.

Access to each species’ full posterior predictive distribution affords great flexibility
in summarizing the uncertainty in the spatially explicit predictions. This is a key strength
of the sampling-based framework. Based on these distributions, Figure 7 depicts the range
between the 0.025 and 0.975 quantiles (i.e., qU −qL of P(qL < Y ∗ < qU | Data) = 1−α).
However, any percentile or function of the predictive distribution can be mapped. Beyond
describing the uncertainty in estimates of biomass per hectare, these error surfaces can
reveal missing regressors and regions within the domain with insufficient observations.
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6. DISCUSSION

This article focused on the development of a general Gaussian template for multivariate
spatial regression models with Gaussian responses that arise in the biological and environ-
mental sciences. Through our proposed template, we investigated the multivariate BEF
forest biomass dataset using models with increasing richness in correlation structures. Our
example demonstrated that simple covariance structures, such as those that ignore covari-
ances between the response variables or impose common spatial ranges for each of the
variables, yield poorer fits to the data. The parameter estimates from the “best” model
were used to construct a predictive surface of forest biomass for each major species on
the BEF. Most importantly, access to the full multivariate posterior predictive distribution
permitted mapping of uncertainty in these predictions. Data layers such as these can serve
as input variables to subsequent models used to help us better understand forest carbon
dynamics in the northeastern United States.

We foresee future work in several directions. On the practical front, we intend to con-
duct more in-depth investigations into the statistical versus practical criterion for model
selection, such as comparing DIC with Root Mean Square Error (RMSE) calculated using
the validation set. In the BEF dataset, although DIC selects Model 5 we observe rather
marginal improvements in RMSE calculated within the validation set—from a score of
about 58 for Model 2 (the worst spatial model) to 50 for Model 5 (the best spatial model).
We expect this reduction to be enhanced by higher cross-correlations between the variables
(the highest cross-correlation for our current example was approximately 0.45) that would
allow learning through the off-diagonal elements.

On the methodological side, we envision richer structures for the 9 matrix, which we
specified as diagonal here. These present data did not yield good convergence with a gen-
eral inverted Wishart prior on 9. This is because with one multivariate observation from
each location the data is unable to identify such rich structures in 9. We could, how-
ever, consider replicated multivariate measurements from each location that would assist
in accommodating such structures which could represent nonspatial residual correlation. In
such replicated settings we could also estimate nonstationary multivariate processes with
the cross-covariance varying across space and being captured by the space-varying linear
transformation A(s). As a further step one could devise strategies of modeling A(s)AT (s)
using a matrix-variate spatial process.

Also, in certain contexts one may consider relaxing the assumption about the non-
singularity of A. This may be relevant when a very large dimensional spatial processes
needs to be projected onto a span of a smaller number of independent processes. For ex-
ample, the m-variate process W(s) may be related to a p-variate process W̃(s) (p < m) as
W(s) = A ˜W(s), where A is now an m × p matrix. In fact, often in practice two or three
components for W̃(s) are able to capture the underlying spatial variation. However, now
AAT is rank-deficient and the inverse Wishart prior is precluded. One may parameterize
this AAT in terms of its Givens angles and eigenvectors and assign priors to them. Daniels
and Kass (1999) provided a detailed theoretical investigation into such priors.

For the models that we explored, the off-diagonal elements of K and 9 only contribute
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to learning if the variance between response variables is a linear function. What if there
is some nonlinear association among response variables’ variance? We might try lineariz-
ing transformations; however, a more fruitful approach would allow general functional
relationships within the cross-covariance and cross-measurement error matrices. Then our
task of guaranteeing a positive definite 6 becomes more difficult; however, the reward in
improved precision could be substantial. Browne (2006) discussed how we might ensure
the correct condition of the final variance matrix.

Finally, to make our methodology more far-reaching in its usage, we need to recognize
that the computational burden for implementing our template will explode with a large
number of locations. This is known as the so-called “big-N” problem in spatial statistics
and is an area of active research. Strategies for addressing this problem involve represent-
ing the spatial process W(s) over a smaller set of representative locations (called knots)
(see, e.g., Banerjee et al. 2004). These methods should also be applicable to spatiotemporal
settings where the computational burden is considerably increased with the added dimen-
sion. It is also worth noting that Zhang (2006) considered an EM algorithm for maximum
likelihood estimation (essentially treating W(s) as “missing” spatial effects) for a spatially
static linear model of coregionalization. The EM algorithm has some desirable properties
though it does not incorporate model uncertainty, hence we did not pursue this approach
here. However, Zhang (2006) derived explicit closed-form expressions and shows that the
resulting matrix estimates of A are positive semidefinite. Therefore it is potentially useful
for dealing with a high-dimensional multivariate process given a large number of spatial
locations.
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